

DPP No. 27

Total Marks : 14

Max. Time: 15 min.

 $F_0 = 100 \text{ N}$

5kc

Topics : Relative Motion, Newtons's Law of Motion

Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1	(3 marks, 3 min.)	[3, 3]
Multiple choice objective ('-1' negative marking) Q.2	(4 marks, 4 min.)	[4, 4]
Subjective Questions ('–1' negative marking) Q.3	(4 marks, 5 min.)	[4, 5]
Comprehension ('–1' negative marking) Q.4 to Q.6	(3 marks, 3 min.)	[3, 3]

1. A stone is projected horizontally with speed v from a height h above ground. A horizontal wind is blowing in direction opposite to velocity of projection and gives the stone a constant horizontal acceleration f (in direction opposite to initial velocity). As a result the stone falls on ground at a point vertically below the point of projection. Then the value of height h in terms of f, g, v is (g is acceleration due to gravity)

(A)
$$\frac{gv^2}{2f^2}$$
 (B) $\frac{gv^2}{f^2}$ (C) $\frac{\sqrt{2}gv^2}{f^2}$ (D)

2. Two blocks of masses $m_1 = 2kg$ and $m_2 = 5kg$ hang over a massless pulley as shown in the figure. A force $F_0 = 100$ N acting at the axis of the pulley accelerates the system upwards. Then : (Take g = 9.8 m/s²) (A) Acceleration of 2 kg mass is 15.2 m/sec² (B) Acceleration of 5kg mass is 0.2 m/sec²

(C) Acceleration of both the masses is same

- (D) Acceleration of both the masses is upward
- 3. A 1 kg block 'B' rests as shown on a bracket 'A' of same mass. Constant forces $F_1 = 20$ N and $F_2 = 8$ N start to act at time t = 0 when the distance of block B from pulley is 50 cm. Time when block B reaches the pulley is ______. (Assume that friction is absent every where. Pulley and string are light.

COMPREHENSION

Two smooth blocks are placed at a smooth corner as shown. Both the blocks are having mass m. We apply a force F on the small block m. Block A presses the block B in the normal direction, due to which pressing force on vertical wall will increase, and pressing force on the horizontal wall decrease, as we increase F. (θ = 37° with horizontal). As soon as the pressing force on the horizontal wall by block B becomes zero, it will loose the contact with the ground. If the value of F is further increased, the block B will accelerate in upward direction and simultaneously the block A will move toward right.

4. What is minimum value of F, to lift block B from ground :

(A) $\frac{25}{42}$ mg	(B) $\frac{5}{4}$ mg	(C) $\frac{3}{4}$ mg	(D) $\frac{4}{2}$ mg
¹² 12	(²) 4 ^g	(³) 4 ⁹	(2) 3

5. If both the blocks are stationary, the force exerted by ground on block A is :

(A) mg +
$$\frac{3F}{4}$$
 (B) mg - $\frac{3F}{4}$ (C) mg + $\frac{4F}{3}$ (D) mg - $\frac{4F}{3}$

- 6. If acceleration of block A is a rightward, then acceleration of block B will be :
 - (A) $\frac{3a}{4}$ upwards (B) $\frac{4a}{3}$ upwards (C) $\frac{3a}{5}$ upwards (D) $\frac{4a}{5}$ upwards

CLICK HERE

Get More Learning Materials Here : 📕

Answers Key

DPP NO. - 27

1.	(D)	2.	(A) (E	3) (D)	3	5.	0.5 sec.
4.	(C)	5.	(C)	6.	(A)		

Hint & Solutions

DPP NO. - 27

1. Time taken to reach the ground is given by

$$h = \frac{1}{2}gt^2$$
 (1)

Since horizontal displacement in timeft is zero

2.

50 N

a = 15.2 m/sec² upwards As the acceleration of both the masses is upward.

Get More Learning Materials Here : 💻

🕀 www.studentbro.in

3. F.B.D. of Aw.r.t. grivel

5. If both the blocks are stationary, Balancing forces along x-direction $F = N \sin \theta \implies N = F/\sin \theta$

Balancing forces along y-direction N_v = mg + N $\cos\theta$

= mg +
$$\left(\frac{F}{\sin\theta}\right)\cos\theta$$
 = mg + F $\cot\theta$
N_y = mg + $\frac{4F}{3}$

6. To keep regular contact a $\sin \theta = b \cos \theta$

Get More Learning Materials Here : 📕

